基于多传感器信号融合的滚动轴承故障诊断(Pytorch)

基于多传感器信号融合的滚动轴承故障诊断(Pytorch)

针对单一传感器数据难以完整刻画滚动轴承故障状态信息,导致故障诊断结果不佳的问题

提出了基于多传感器数据融合的故障诊断方法

首先,利用通道拼接将振动信号和电流信号构造成多通道数据,以充分描述设备运行的状态信息;其次,引入注意力机制CBAM对不同通道数据自适应加权,抑制多通道数据中无关信息干扰,增强特征提取的表征能力

最后,在分类通道后添加softmax层输出诊断结果

实验结果表明,所提方法分类准确率达到99.96%以上,具有良好的鲁棒性和自适应性

参考文献:《基于卷积神经网络的智能故障诊断方法研究》中北大学博士论文第4章

数据预处理:可支持1维原始数据

网络模型:1DCNN、1DResNet、1DRsNet

数据集:德国帕德博恩开源滚动轴承数据集(PN_Dataset)

网络框架:pytorch

结果输出:损失曲线图、准确率曲线图、混淆矩阵、tsne图

准确率:测试集99.96%

ID:4566

详询客服 微信shujuqudong1 或shujuqudong6 或 qq68823886 或 27699885

图文详情请查看: http://matup.cn/870676316908.html

QQ客服:27699885 微信客服:shujuqudong1 微信客服:shujuqudong6


本站资料较杂,精品资料单独做了汇总,可查阅 https://liruan.net/ 里面资源更优秀